

Introduction

Human can throw different objects in various ways, adaptive to unstructured environments. Can we design reliable and efficient algorithms for robots to do so?

Challenges

Dexterous throwing - nonconvex feasible set

- Complex geometry of the 7-DoF robot
- Restrictive dynamic limits

Release uncertainty – intricate contact mechanics

- Objects differ in friction and deformation
- Same throwing motion could lead to different landing outcomes
- End-to-end learning is not scalable to diverse configurations

LASA Robust Dexterous Throwing against Release Uncertainty

Yang Liu and Aude Billard, submitted to T-RO

Velocity Hedgehog – Dictionary of Diverse Throwing Configurations [2]

- direction)
- Value of each key:

Online: search over 100k entries

- 20 ms running time

Tube Acceleration - Robust Release Motion

Idea: design robot motion to traverse the family of valid throwing configurations during gripper opening (100 ms)

Insight: object flying flowmap: initial state \rightarrow landing position is quasi-linear (bounded Hessian) Constant joint acceleration – tube acceleration during release window can drive the robot stay

- in valid throwing configurations
- Tube acceleration can be found via convex optimization within **20 ms** and with bounded error

System Architecture OptiTrack target position **Tube Acceleration** Velocity Hedgehog throwing state release motior matching 20 ms [2] 60 ms [3] 20 ms robot state 500Hz

Offline: build throwing dictionary • Keys: 100k pairs of (end-effector position, throwing

• maximum feasible Cartesian velocity v_{max} • the joint configuration enabling v_{max} • Extracted from 1 million joint configurations (7 hours)

• Thousands of qualitatively different solutions

Thrown objects

Object Weight (g)

Statistics of landing errors

Obj grey sma tenn

over

Conclusion

- Dexterous throwing configurations can be found quickly via Velocity Hedgehog Release uncertainty can be suppressed by robust throwing motion design
- Fast and reliable algorithms enable adaptive robot throwing

Reference

IROS 2022. Methods 2020.

Real Throwing Experiments

Population of landing positions

	Mean (mm)		Std. (mm)	
ect	Tube	Zero	Tube	Zero
/_ball ll_box_heavy nis_ball	74.52 87.12 66.23	53.70 95.30 121.07	9.51 7.47 9.55	15.60 44.57 25.97
rall	75.88	88.11	12.04	40.74

- [1] Zeng et al., "TossingBot: Learning to Throw Arbitrary **Objects with Residual Physics**", RSS 2019.
- [2] Yang Liu, Aradhana Nayak and Aude Billard, "A Solution to Adaptive Mobile Manipulator Throwing",
- [3] Petr Listov and Colin Jones, "PolyMPC: An efficient and extensible tool for real-time nonlinear model predictive tracking and path following for fast *mechatronic systems*", Optimal Control Applications and
- Acknowledgement: The authors acknowledge the H2020 ICT-46-2020 EU project DARKO for supporting this work.